http://img87.imageshack.us/img87/5862/image1an1.gif . yAnI AL-KhumAiRa: 2011
CLICK HERE FOR BLOGGER TEMPLATES AND MYSPACE LAYOUTS »

Kamis, 10 November 2011

suatu hari 1 keluarga yang sedang berjalan jalan dengan mobil, anak bertanya kepada papanya
Anak;”pa,kok phon di pinggir jalan mengikuti kita ya
papa:”masa sih?
Anak:”iya pa,liat tuh! kenapa pohon mengikuti kita apa kita seperti moster?
Papa:”hemm mungkin”
padahal diatas berkaitan dengan gerak semu yg seolah- olah benda di sekitar kita mengikuti kita

Read More..

Selasa, 14 Juni 2011

lum lama berselang, tepatnya tanggal 5 Juni yang lalu, suatu berita besar iptek muncul dari sebuah konperensi fisika “Neutrino 98″ yang berlangsung di Jepang. Neutrino, salah satu partikel dasar yang jauh lebih kecil daripada elektron, ternyata memiliki massa, demikian laporan dari suatu tim internasional yang tergabung dalam eksperimen Super-Kamiokande. Tim ahli-ahli fisika yang terdiri dari kurang lebih 120 orang dari berbagai negara termasuk AS, Jepang, Jerman, dan Polandia tersebut melakukan penelitian terhadap data-data yang dikumpulkan selama setahun oleh sebuah laboratorium penelitian neutrino bawah tanah di Jepang.

Jika laporan ini terbukti benar dan dapat dikonfirmasi kembali oleh tim lainnya maka akan membawa dampak yang sangat luas terhadap beberapa teori fisika, terutama
pembahasan mengenai interaksi partikel dasar, teori asal mula daripada alam semesta ini serta problema kehilangan massa (missing mass problem) maupun teori neutrino matahari.

Neutrino, atau neutron kecil, adalah suatu nama yang diberikan oleh fisikawan dan pemenang hadiah Nobel terkenal dari Jerman: Wolfgang Pauli. Neutrino adalah partikel yang sangat menarik perhatian para fisikawan karena kemisteriusannya. Neutrino juga merupakan salah satu bangunan dasar daripada alam semesta yang bersama-sama dengan elektron, muon, dan tau, termasuk dalam suatu kelas partikel yang disebut lepton. Lepton bersama-sama dengan enam jenis partikel quark adalah pembentuk dasar semua benda di alam semesta ini.

Ditemukan secara eksperimental pada tahun 1956 (dalam bentuk anti partikel) oleh Fred Reines (pemenang Nobel fisika tahun 1995) dan Clyde Cowan, neutrino terdiri dari 3 rasa (flavor), yakni: neutrino elektron, neutrino mu dan neutrino tau. Neutrino tidak memiliki muatan listrik dan selama ini dianggap tidak memiliki berat, namun neutrino memiliki antipartikel yang disebut antineutrino. Partikel ini memiliki keunikan karena sangat enggan untuk berinteraksi. Sebagai akibatnya, neutrino dengan mudah dapat melewati apapun, termasuk bumi kita ini, dan amat sulit untuk dideteksi.

Diperkirakan neutrino dalam jumlah banyak terlepas dari hasil reaksi inti pada matahari kita dan karenanya diharapkan dapat dideteksi pada laboratorium di bumi. Untuk mengurangi pengaruh distorsi dari sinar kosmis, detektor neutrino perlu ditaruh di bawah tanah. Dengan mempergunakan tangki air sebanyak 50 ribu ton dan dilengkapi dengan tabung foto (photomultiplier tube) sebanyak 13 ribu buah, tim Kamiokande ini menemukan bahwa neutrino dapat berosilasi atau berganti rasa. Karena bisa berosilasi maka disimpulkan bahwa neutrino sebenarnya memiliki massa.

Penemuan ini sangat kontroversial karena teori fisika yang selama ini kerap dipandang sebagai teori dasar interaksi partikel, yakni disebut teori model standard, meramalkan bahwa neutrino sama sekali tidak bermassa. Jika penemuan neutrino bermassa terbukti benar maka boleh jadi akan membuat teori model standard tersebut harus dikoreksi.

Penemuan neutrino bermassa juga mengusik bidang fisika lainnya yakni kosmologi. Penemuan ini diduga dapat menyelesaikan problem kehilangan massa pada alam semesta kita ini (missing mass problem). Telah sejak lama para ahli fisika selalu dihantui dengan pertanyaan: Mengapa terdapat perbedaan teori dan pengamatan massa alam semesta? Jika berat daripada bintang-bintang, planet-planet, beserta benda-benda alam lainnya dijumlahkan semua maka hasilnya ternyata tetap lebih ringan daripada berat keseluruhan alam semesta.

Para ahli fisika menganggap bahwa terdapat massa yang hilang atau tidak kelihatan. Selama ini para ahli tersebut berteori bahwa ada partikel unik yang menyebabkan selisih massa pada alam semesta. Namun teori semacam ini memiliki kelemahan karena partikel unik yang diteorikan tersebut belum pernah berhasil ditemukan.

Dari hasil penemuan tim Kamiokande ini dapat disimpulkan bahwa ternyata partikel unik tersebut tidak lain daripada neutrino yang bermassa.

Menurut teori dentuman besar (Big Bang) alam semesta kita ini bermula dari suatu titik panas luar biasa yang meledak dan terus berekspansi hingga saat ini. Fisikawan Arno Penzias dan Robert Wilson (keduanya kemudian memenangkan hadiah Nobel fisika tahun 1978) pada tahun 1965 menemukan sisa-sisa gelombang mikro peninggalan dentuman besar yang sekarang
telah mendingin hingga suhu sekitar 3 Kelvin. Namun salah satu hal yang masih diperdebatkan adalah masalah ekspansi alam semesta itu sendiri. Apakah hal ini akan terus menerus terjadi tanpa akhir? Penemuan neutrino bermassa diharapkan akan bisa menjawab pertanyaan yang sulit ini.

Bayangkan suatu neutrino yang sama sekali tidak bermassa, seperti yang diperkirakan selama ini. Gaya gravitasi tentu tidak akan berpengaruh sama sekali pada partikel yang tidak memiliki berat. Namun apa yang terjadi jika neutrino ternyata memiliki berat? Dalam jumlah yang amat sangat banyak neutrino-neutrino ini tentu akan bisa mempengaruhi ekspansi alam
semesta. Tampaknya ada kemungkinan ekspansi alam semesta suatu saat akan terhenti dan terjadi kontraksi atau penciutan kembali jika ternyata neutrino memiliki massa.

Terakhir masih ada satu lagi problem fisika yang akan diusik oleh hasil penemuan ini yaitu problem neutrino matahari, dimana terjadi selisih jumlah perhitungan dan pengamatan neutrino yang dihasilkan oleh matahari kita.

Untuk keabsahan penemuan ini tim internasional dari eksperimen super Kamiokande dalam laporannya juga mengajak tim-tim saintis lainnya untuk mengkonfirmasi penemuan mereka. Namun menurut pengalaman di masa lalu, laporan osilasi neutrino dan neutrino bermassa selalu kontroversi dan jarang bisa dikonfirmasi kembali.

Read More..

belumnya, teori mengatakan bahwa waktu itu tak terbatas, akan tetapi teori baru mengatakan sebaliknya.

Waktu Mungkin Akan Berhenti 5 Milyar Tahun Depan

Sejauh yang bisa dikatakan para astrofisikawan, alam semesta mengembang dengan kecepatan tinggi dan cenderung akan tetap demikian untuk jangka waktu yang tak terbatas. Akan tetapi sekarang beberapa fisikawan mengatakan bahwa teori ini yang disebut "pengembangan abadi" dan implikasinya bahwa waktu tak ada akhirnya, merupakan suatu masalah bagi para ilmuwan untuk mengkalkulasi probabilitas setiap kejadian. Dalam makalah baru, mereka mengkalkulasi bahwa waktu cenderung akan berhenti dalam 5 milyar tahun mendatang yang disebabkan oleh sejenis malapetaka yang tak ada satupun hidup pada waktu itu untuk menyaksian kejadian tersebut.

Para fisikawan yakni Raphael Bousso dari Universitas California, Berkeley, bersama rekan-rekannya mempublikasikan makalah yang berisi rincian teori mereka di arXiv.org. Dalam makalah tersebut, mereka menjelaskan bahwa pada suatu alam semesta abadi, kejadian-kejadian yang paling mustahil pun akhirnya akan terjadi, dan tak hanya terjadi tapi terjadi dalam jumlah yang tak terbatas. Oleh karena probabilitas atau peluang diartikan dalam lingkup kelimpahan relatif kejadian-kejadian, maka tak ada gunanya menentukan tiap probabilitas karena setiap kejadian akan cenderung terjadi dengan sama.

"Jika memang terjadi di alam, pengembangan abadi memiliki implikasi-implikasi yang luar biasa besar," seperti yang ditulis Bousso dan rekan-rekannya dalam makalah mereka. "Tipe kejadian atau peristiwa apa pun yang memiliki probabilitas yang tidak bernilai nol, akan terjadi banyak kali secara tak terbatas, biasanya pada wilayah-wilayah terpisah yang tetap selamanya di luar hubungan sebab. Hal ini meruntuhkan dasar prediksi-prediksi probabilistik eksperimen-eksperimen yang dilakukan dalam dunia sehari-hari. Apabila secara tak terbatas banyak orang di seluruh alam semesta memenangkan undian, pada bidang apa seseorang masih bisa mengklaim bahwa memenangkan undian itu mustahil? Pastinya ada juga banyak orang yang tidak menang undian, tapi dalam pengertian apa jumlah mereka lebih banyak? Dalam eksperimen-eksperimen sehari-hari seperti mengikuti undian, kita memiliki aturan-aturan jelas untuk membuat prediksi-prediksi dan menguji teori-teori. Akan tetapi jika alam semesta mengembang selamanya, kita tak lagi mengetahui mengapa aturan-aturan ini berfungsi.

"Untuk melihat bahwa hal ini bukanlah semata-mata merupakan maksud filosofis, hal tersebut membantu mempertimbangkan eksperimen-eksperimen kosmologis di mana aturan-aturan tersebut agak kurang jelas. Sebagai contoh, seseorang ingin memprediksi atau menjelaskan keistimewaan Latar Gelombang Mikro Kosmik, atau teori lebih dari satu vakum, seseorang mungkin ingin memprediksi sifat-sifat terduga dari vakum tersebut yang kita ketahui sendiri, seperti massa Higgs. Hal ini memerlukan komputasi jumlah relatif observasi-observasi nilai-nilai berbeda massa Higgs tersebut, atau langit Latar Gelombang Mikro Kosmik. Akan ada banyak contoh-contoh tak terbatas setiap pengamatan yang mungkin dilakukan, jadi apa itu probabilitas? Hal ini dikenal sebagai "masalah pengukuran" pengembangan abadi."

Para fisikawan menjelaskan bahwa satu solusi terhadap masalah ini ialah untuk menyimpulkan bahwa waktu pada akhirnya akan berhenti. Maka akan ada jumlah terbatas peristiwa yang terjadi di mana kejadian-kejadian mustahil terjadi lebih sedikit daripada kejadian-kejadian yang mungkin.

Pemilihan waktu "penghentian" ini akan mengartikan rangkaian kejadian-kejadian yang diperkenankan. Oleh karena itu para fisikawan mencoba mengkalkulasi kemungkinan kapan waktu akan berhenti yang menghasilkan lima pengukuran penghentian berbeda. Pada dua dari lima skenario ini, waktu memiliki 50eluang berhenti dalam waktu 3,7 milyar tahun. Pada dua skenario lainnya, waktu memiliki 50eluang untuk berhenti dalam 3,3 milyar tahun.

Pada skenario kelima yang merupakan skenario terakhir, skala waktu sangat singkat (dalam urutan waktu Planck). Pada skenario ini, para ilmuwan mengkalkulasi bahwa "waktu akan sangat besar cenderung berhenti pada detik berikutnya." Untungnya, kalkulasi ini memprediksikan bahwa kebanyakan orang adalah "bayi-bayi Boltzmann" yang timbul dari gejolak-gejolak kuantum pada permulaan alam semesta. Oleh karena kebanyakan dari kita bukan "bayi-bayi" tersebut, para fisikawan bisa mengeluarkan skenario ini (sudah pasti).

Bagaimana akhir waktu tersebut seperti yang dirasakan oleh orang-orang pada waktu itu? Sebagaimana yang dijelaskan oleh para fisikawan, orang-orang tersebut tak akan pernah mengetahuinya. "Orang-orang pada masa itu akan tak terelakkan berada dalam penghentian sebelum menyaksikan kematian semua sistem lainnya," seperti yang ditulis oleh para ilmuwan. Mereka membandingkan batas penghentian waktu tersebut dengan ufuk lubang hitam.

"Batas tersebut dapat diperlakukan sebagai suatu obyek dengan sifat-sifat fisik termasuk temperatur," menurut para fisikawan dalam makalah mereka. "Sistem-sistem materi yang bertemu dengan akhir waktu di termalisasi di ufuk ini. Hal ini mirip dengan gambaran orang yang berada di luar tentang suatu sistem materi yang jatuh ke dalam sebuah lubang hitam. Namun, hal yang sangat baru ialah pernyataan bahwa kita mungkin mengalami termalisasi pada waktu melewati ufuk lubang hitam." Sekalipun begitu termalisasi "sistem materi" tetap saja tak akan menemukan sesuatu yang tak biasa ketika melewati ufuk ini.

Bagi mereka yang merasa tak nyaman terhadap berhentinya waktu, para fisikawan memperhatikan bahwa ada solusi-solusi lain untuk mengukur masalah tersebut. Mereka tidak mengklaim bahwa kesimpulan mereka bahwa waktu akan berhenti itu benar, hanya hal tersebut secara logika mengikuti dari suatu rangkaian asumsi. Jadi mungkin salah satu dari ketiga asumsi yang menggarisbawahi kesimpulan itu malahan tidak benar.

Asumsi yang pertama ialah bahwa alam semesta itu sedang mengembang selamanya, yang merupakan konsekuensi relativitas umum dan sangat didukung oleh bukti eksperimental yang diamati selama ini. Asumsi kedua ialah bahwa definisi probabilitas didasarkan pada frekwensi relatif suatu kejadian, atau apa yang disebut oleh para ilmuwan sebagai asumsi tipikalitas. Asumsi ketiga ialah bahwa jika waktu ruang memang tak terbatas, maka satu-satunya cara untuk menentukan probablitas suatu kejadian ialah membatasi atensi seseorang kepada suatu bagian terbatas dari alam-alam semesta yang tak terbatas. Beberapa fisikawan lainnya memperhatikan alternatif-alternatif asumsi ketiga ini.

Apapun yang terjadi dalam 3,7 milyar tahun mendatang, makalah Bousso dan rekan-rekannya mungkin akan menimbulkan bermacam-macam reaksi dalam waktu dekat ini.

Setidaknya kita bisa melihat garis besar dari informasi ini.

sumber: http://www.fisikanet.lipi.go.id/

Read More..

Jumat, 14 Januari 2011

oohh fisika

dalam lingkar fisika ku berpijak
menjalani semua hal yang berhubungan dengannya
walau sering pahit yang ku dapat
tapi tetap ku coba tuk mengenalnya lebih dalam
hingga ku yakin ku bisa mengerti dan paham tentangnya

Read More..

Rabu, 12 Januari 2011

pesan fisika

kata orang ilmu fisika itu sangat sulit jika diliat dari sudut pandang mana pun. Walau guru yang mengajar sehebat professor, seahli fisikawan, sehebat Sir Isac Newton.Ilmunya itu tak kan bisa lengket dalam otak yang kebal ini.....
tapi percayalah sekebal apa pun otak itu,, sebeku apa pun hati itu untuk menerima pelajaran ilmu fisika. Ia insyaALLAH akan luluh juga jika kita mau terus berusaha untuk mempelajarinya hingga titik darah penghabisan,,, cieeeeeeleee ( alay sangat )

Read More..

penutup blog

efek salju

Bagaimana dengan blog ini?

butterfly